

JY-003-1277004

Seat No. _____

M. Sc. (ECI) (Sem. VII) (CBCS) (W.E.F.-2016) Examination

October - 2019

Electromagnetics: Paper - 28

(New Course)

Faculty Code: 003

Subject Code: 1277004

Time : 2:30 Hours] [Total Marks : 70

Instructions: (1) All questions carry equal marks.

(2) Figures on right hand side indicate marks.

- 1 Answer the following: (any seven) 14
 - (1) Draw and define unit vector.
 - (2) What are fixed vector and free vector?
 - (3) Write the properties of vector addition.
 - (4) What are the point charges and functions of charges?
 - (5) Write the limitation of Coulomb's law.
 - (6) Define potential.
 - (7) What is magnetic flux density?
 - (8) Write the statement of Ampere's law for current element.
 - (9) Write the Maxwell's equations for static fields.
 - (10) Write about retarded potential.
- 2 Answer the following: (any two) 14
 - (1) Explain the law of parallelogram for addition of two vectors with special cases of parallelogram.
 - (2) Explain electric field strength due to point charge and also explain electric field strength due to infinite line charge with suitable derivations of equations.
 - (3) Derive the formula for potential due to electric dipole 7

$$V = \frac{p \cos \theta}{4\pi \in_0 r^2} \quad \text{volts.}$$

3 Answer the following:

- **14**
- (1) Explain Faraday's experiment to define flux.
 Write a note on Coulomb's law.
- 7

7

(2) Explain Gauss's Law on arbitrary surface and prove $\oint_S D.dS = Q$

OR

3 Answer the following:

14

7

- (1) Explain boundary conditions on E and D with proof.
- (2) Define dielectric materials and write the properties of it. Explain dielectrics in electric field and types of dielectric materials.
- 4 Answer the following:

- 14
- (1) Explain Ampere's work law and derive the equation $\oint H.dL = I_{enc} . \text{ Explain Faraday's law of induction}.$
- (2) Write a note on Ampere's force law with suitable 7 diagram.
- 5 Answer the following: (any two)

- **14**
- (1) Write a note on magnetization in materials and magnetic dipole moment.
- (2) Explain energy density in a magnetic field and derive equation 7

$$W_H = \frac{1}{2}\mu H^2$$
 and $W_H = \frac{1}{2}B.H$.

- (3) Write the Maxwell's equations in Phasor form.
- (4) Explain time varying potentials, Lorentz gauge condition and Helmholtz theorem.

7